17 August 2017 ## Wide Spodumene Intercepts at Lemare Lithium Project - Lemare spodumene pegmatite extended 250 m by drilling - SW Extension returns wide intercepts of spodumene mineralisation: ``` 33.7 m @ 0.94% Li₂0 18.0 m @ 2.00% Li₂0 ``` Lepidico Ltd (ASX:LPD) ("Lepidico" or "Company") is pleased to advise the results from the second stage of drilling at the Lemare spodumene project in Quebec, Canada. The Stage 2 diamond drilling program has been completed along the 600 metre long SW Extension of the Lemare spodumene pegmatite identified in late 2016 (Figures 1 - 3). A total of 15 holes, for 1,527 m of NQ core, were drilled on nominal 50 m sections along the mapped extension of the spodumene-bearing pegmatite to the SW of a lake and the discovery zone drilling last year. Multiple wide intercepts were returned from the SW Extension, confirming Lemare as a significant spodumene deposit, including: ``` 33.7 m @ 0.94% Li₂O, from 9.60 m, in hole LE-17-29 18.0 m @ 2.00% Li₂O, from 6.80 m, in hole LE-17-30 ``` These results build on the spodumene mineralisation identified by last year's drilling at the Lemare discovery deposit, as reported on 24 November 2016, that included: ``` 28.5 m @ 2.15% Li₂O, from 5.50 m, in hole LE-16-13 24.0 m @ 1.87% Li₂O, from 13.5 m, in hole LE-16-14 21.0 m @ 1.75% Li₂O, from 38.8 m, in hole LE-16-03 ``` A full list of significant intercepts (>0.5% Li_2O) from the SW Extension program are presented in Table 1. Hole location data is provided in Table 2, and full results are given in Appendix 1. Figure 1. Lemare project outline Figure 2. Location of Lemare and SW Extension T: +61 8 **9363 7800** E: info@lepidico.com Broad intervals of spodumene-bearing pegmatite are recorded in the eastern 250 m section of the SW Extension corridor, and remain open at depth, as shown in Figures 4, 5 and 6. Geological logs show spodumene content ranging from 5% up to 25%. Drilling to the west of a sharp inflection in the interpreted position of the surface mineralised corridor did not intercept the spodumene pegmatites at depth or identified relatively narrow intervals, necessitating a reinterpretation of the geology in this area. This is similar to the pinch-and-swell character of the pegmatites seen at the main Lemare prospect 300 m to the northeast across the lake. **Figure 3**. Lemare SW Extension, simplified geology showing location of drill holes and cross-sections presented in Figures 4-6. Figure 4. Lemare SW Extension, cross-section 600W. Figure 5. Lemare SW Extension, cross-section 650W. Figure 6. Lemare SW Extension, cross-section 725W. The Lemare spodumene project is some 70 km² in area and is secured by the Lemare Option Agreement between the Company and project owner Critical Elements Corporation (TSX-V: CRE) Under the terms of the Lemare Option Agreement, the Company is earning up to a 75% interest in the Lemare project. To maintain its position, the Company had an initial requirement to spend C\$800,000 on exploration by 31 August 2017 (extended from 31 December 2016 by agreement with CRE). With completion of the Stage 2 drilling program Lepidico has met this requirement. To complete the earn-in to an initial 50% interest in the project, the Company is to fund a further C\$1.2M of exploration and delineate a JORC Code compliant Minerals Resource by 31 August 2018. The Company can earn a further 25% interest by completing a feasibility study and an environmental study on Lemare by 30 June 2020 and by making a payment of C\$2.5M (in cash or shares) to Critical Elements Corporation. Results generated to date provide significant encouragement that the Lemare property will host a significant spodumene resource. The next phase of work for the Lemare Spodumene Project will be developed following completion of a geological reinterpretation of the SW Extension in September 2017. **Table 1.** Lemare Spodumene Project, diamond drilling significant intersections (>0.5% Li₂O) from the SW Extension (June 2017) and Lemare (October 2016) | ion (June 2017) and | Lemare (Octo | DC1 2010) | Down-hole | | |---------------------------|--------------|-----------|---------------|--| | Lemare Hole Id | From (m) | To (m) | Intercept (m) | Li ₂ O (>0.5%) ¹ | | SW Extension, 2017 | | | | | | LE-17-17 | 109.70 | 111.80 | 2.10 | 1.37 | | LE-17-18 | 11.50 | 14.80 | 3.30 | 1.90 | | и | 25.30 | 26.80 | 1.50 | 0.83 | | LE-17-19 | 3.00 | 6.80 | 3.80 | 1.09 | | u u | 11.70 | 13.20 | 1.50 | 1.02 | | u | 32.70 | 33.80 | 1.10 | 0.72 | | u | 46.10 | 47.10 | 1.00 | 1.88 | | LE-17-27 | 13.30 | 18.30 | 5.00 | 1.58 | | u | 19.10 | 21.50 | 2.40 | 0.84 | | u u | 25.00 | 25.70 | 0.70 | 0.52 | | u u | 27.80 | 28.50 | 0.70 | 1.11 | | u u | 33.20 | 36.60 | 3.40 | 1.86 | | LE-17-28 | 22.50 | 24.00 | 1.50 | 1.24 | | u u | 30.00 | 37.30 | 7.30 | 1.18 | | " | 40.90 | 47.00 | 6.10 | 2.26 | | " | 51.30 | 52.80 | 1.50 | 1.21 | | LE-17-29 | 9.60 | 43.30 | 33.70 | 0.94 | | including | 17.70 | 30.70 | 13.00 | 1.42 | | and | 37.90 | 43.30 | 5.40 | 1.44 | | u u | 52.30 | 58.10 | 5.80 | 1.53 | | LE-17-30 | 6.80 | 24.80 | 18.00 | 2.00 | | u u | 39.30 | 42.30 | 3.00 | 2.28 | | LE-17-31 | 62.00 | 63.00 | 1.00 | 1.90 | | u . | 71.70 | 73.00 | 1.30 | 1.23 | | Lemare, 2016 ² | | | | | | LE-16-01 | 40.70 | 56.60 | 15.90 | 1.26 | | LE-16-03 | 38.80 | 59.80 | 21.00 | 1.75 | | LE-16-04 | 29.30 | 32.30 | 3.00 | 0.96 | | и | 46.90 | 51.90 | 5.00 | 1.12 | | и | 62.30 | 63.30 | 1.00 | 1.23 | | LE-16-05 | 35.20 | 40.50 | 5.30 | 1.79 | | и | 46.00 | 47.75 | 1.75 | 2.28 | | LE-16-06 | 73.90 | 76.25 | 2.35 | 1.92 | | LE-16-07 | 36.00 | 51.00 | 15.00 | 1.62 | | LE-16-09 | 83.35 | 85.85 | 2.50 | 1.01 | | и | 91.25 | 92.85 | 1.60 | 1.43 | | LE-16-11 | 9.50 | 10.50 | 1.00 | 1.26 | | LE-16-12 | 15.00 | 17.50 | 2.50 | 1.23 | | u u | 24.50 | 32.90 | 8.40 | 1.43 | | LE-16-13 | 5.50 | 34.00 | 28.50 | 2.16 | | LE-16-14 | 13.50 | 37.50 | 24.00 | 1.87 | | u | 42.00 | 51.00 | 9.00 | 2.70 | ### Notes: Li₂O derived by multiplying elemental Li assay by conversion factor of 2.153 ^{2.} Lemare drilling reported to ASX on 24 November 2016 (under ASX code PLP). **Table 2.** Lemare SW Extension, NQ diamond drilling June 2017, hole collar survey data, UTM Zone 18, NAD83. | Hole ID | N (m) | E (m) | Elevation | Azimuth | Dip | Depth | |----------|---------|--------|-----------|---------|-----|-------| | | | | (m) | | | (m) | | LE-17-17 | 5734109 | 471106 | 344 | 335 | -50 | 123 | | LE-17-18 | 5734148 | 471095 | 341 | 155 | -50 | 75 | | LE-17-19 | 5734125 | 471028 | 342 | 155 | -50 | 75 | | LE-17-20 | 5734156 | 470950 | 343 | 155 | -50 | 126 | | LE-17-21 | 5734145 | 470900 | 345 | 155 | -50 | 129 | | LE-17-22 | 5734091 | 470884 | 347 | 155 | -50 | 78 | | LE-17-23 | 5734052 | 470857 | 350 | 155 | -50 | 90 | | LE-17-24 | 5734010 | 470813 | 350 | 155 | -50 | 90 | | LE-17-25 | 5733980 | 470762 | 350 | 155 | -50 | 126 | | LE-17-26 | 5733931 | 470712 | 350 | 155 | -50 | 126 | | LE-17-27 | 5734185 | 471134 | 339 | 155 | -50 | 75 | | LE-17-28 | 5734212 | 471159 | 337 | 155 | -50 | 84 | | LE-17-29 | 5734240 | 471203 | 335 | 155 | -50 | 81 | | LE-17-30 | 5734257 | 471249 | 333 | 155 | -50 | 75 | | LE-17-31 | 5734222 | 471119 | 338 | 155 | -50 | 174 | #### **Further Information** For further information, please contact Joe Walsh Managing Director Lepidico Ltd +61 (0) 417 928 590 Tom Dukovcic Director Exploration Lepidico Ltd +61 (0)8 9363 7800 The information in this report that relates to Exploration Results is based on information compiled by Mr Tom Dukovcic, who is an employee of the Company and a member of the Australian Institute of Geoscientists and who has sufficient experience relevant to the styles of mineralisation and the types of deposit under consideration, and to the activity that has been undertaken, to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves." Mr Dukovcic consents to the inclusion in this report of information compiled by him in the form and context in which it appears. #### About Lepidico Ltd Lepidico Ltd is an ASX-listed Company focused on exploration, development and production of lithium. Lepidico owns the technology to a metallurgical process that has successfully produced lithium carbonate from non-conventional sources, specifically lithium-rich mica minerals including lepidolite and zinnwaldite. The L-Max® Process has the potential to disrupt the lithium market by providing additional lithium supply from alternative sources. The Company is currently conducting a Feasibility Study for a Phase 1 L-Max® plant, targeting production for 2019. Three potential sources of feed to the planned Phase 1 Plant are being evaluated, one of which is the Separation Rapids deposit in Ontario, Canada in partnership with its owner Avalon Advanced Materials Inc. Lepidico's current exploration assets include an ore access agreement with Grupo Mota over the Alvarrões Lepidolite Mine in Portugal; a farm-in agreement with Pioneer Resources (ASX:PIO) over the PEG 9 lepidolite prospect in Western Australia; options over the Lemare and the Royal projects, both in Quebec, Canada; and an agreement with ASX-listed Crusader Resources (ASX:CAS) on potential deployment of L-Max® in Brazil and Portugal on suitable lithium mica opportunities. ## APPENDIX 1. ASSAY RESULTS, LEMARE SW EXTENSION DIAMOND DRILLING, JUNE 2017 ALS Chemex, Val D'Or, Quebec, Canada; ME-MS61 | HOLE-ID | Year | SAMPLE_NO | DUP | COMMENTS | FROM | то | ш | Li | Al | Ba | Be | Bi | Ca | Cs | к | Мо | Na | Nb | P | Rb | Sn | Sr Ta | Та | Th | w | |----------------------|--------------|------------------|--------|--|------------------|------------------|----------------|-------|--------------|------------|---------------|--------------|------------------|----------------|--------------------|--------------|--------------
----------------|---------------|----------------|---------------|--------------------------|----------------|--------------|------------| | LE-17-17 | 2017 | 647751 | | no spdumene observé | 12.60 | 14.10 | ppm
161 | % | %
7.33 | ppm
30 | ppm
54.6 | ppm
0.36 | ppm
3.64 | ppm
119.5 | ppm
0.29 | ppm
1.25 | %
4.16 | | ppm
-10000 | ppm
107 | ppm
37.3 | ppm ppm
69.7 >100 | ppm 240 | ppm
0.79 | ppm
1.2 | | LE-17-17
LE-17-17 | 2017
2017 | 647752
647753 | | 2-3% SO | 14.10
49.10 | 15.10
50.10 | 433
1980 | | 7.73
7.34 | 30
190 | 43
203 | 0.09 | 2.05 :
1.16 | >500
173.5 | 0.91
1.74 | 0.75
1.49 | 4.61
3.54 | 71.9
102.5 | 3980
1740 | 590
670 | 67.5
63.4 | 50 49.3
56.3 >100 | 135.5 | 0.49 | 1.6
1.8 | | LE-17-17
LE-17-17 | 2017
2017 | 647754
647755 | | 3% | 62.00
96.70 | 63.00
97.40 | 2910
490 | | 8.16
7.87 | 20
30 | 80.6
54.4 | 1.14
0.33 | 1.06
1.77 | 197
243 | 0.37 | 43.3
0.78 | 5.17
5.85 | 82.8
69.8 | 7840
5950 | 207
148.5 | 39.1
19.5 | 48.3 >100
104 62.4 | 135.5 | 0.81 | 0.9 | | LE-17-17
LE-17-17 | 2017
2017 | 647756
647757 | | traces à 1% SO
traces à 1% SO | 105.20
106.70 | 106.70
108.20 | 1850
560 | | 6.8
7.33 | 10
20 | 108.5
124 | 0.6
1.01 | 0.46 | 103
174.5 | 0.17 | 1.19
0.35 | 5.47
5.45 | 98.9
77.1 | 1740
3110 | 86.4
174.5 | 12.6
23.3 | 29.9 >100
54.5 >100 | 125
192.5 | 0.5
0.91 | 1.2 | | LE-17-17
LE-17-17 | 2017
2017 | 647758
647759 | | 1-3 % SO
3-5 % SO | 108.20
109.70 | 109.70
110.80 | 1230
6440 | | 6.86
7.27 | 60
40 | 128.5
126 | 1.05
0.49 | 1.64 ×
0.14 | >500
366 | 1.08
3.73 | 1.51
0.84 | 3.78
3.53 | 48.6
61.4 | 3870
1700 | 810
1760 | 48.1
68.4 | 55.9 >100
24.8 39.4 | 144 | 1.3
2.24 | 1.5
0.9 | | LE-17-17
LE-17-17 | 2017
2017 | 647760
647761 | | Blank
5-7% SO | 109.70
110.80 | 111.80 | 7.1
6320 | | 8.37
6.84 | 570
20 | 0.87
113 | 0.12 | 4.64
0.19 | 0.72
54.1 | 1.24
0.44 | 2.99
35.3 | 2.54
5.09 | 3.2
109.5 | 750
1210 | 16.3
147 | 0.8
71.5 | 505 0.25
23.3 >100 | 224 | 2.62
0.71 | 8.7
1.6 | | LE-17-18
LE-17-18 | 2017
2017 | 647762
647763 | | non-observé
non-observé | 11.50
13.00 | 13.00
14.80 | 7400
9970 | | 6.6
7.36 | 10
10 | 185.5
185 | 2.4
0.72 | 0.16 | 169.5
100.5 | 0.57 | 1.86
0.75 | 3.35
2.86 | 82.9
45.5 | 1700
1160 | 246
206 | 61.7
60.1 | 14.8 74.4
13.8 61.1 | | 0.77 | 1.3 | | LE-17-18
LE-17-19 | 2017 | 647764
647765 | | non-observé
1-2% SO | 25.30
3.00 | 26.80
4.50 | 3870
4190 | | 7.21
6.76 | 20
20 | 110
306 | 0.07 | 0.91 | 106.5
52.5 | 0.48 | 0.86 | 4.49
5.56 | 99
36.3 | 2490
970 | 259
51.5 | 64.6
22.1 | 26.3 >100
24.9 28.1 | 158.5 | 0.69 | 1.8 | | LE-17-19
LE-17-19 | 2017 | 647766
647767 | | 2-3% SO
2-3% SO | 4.50
6.00 | 6.00 | 6210
4620 | | 7.05
7.57 | 10
20 | 219
128 | 0.08 | 0.2 | 85.5 | 0.11 | 1.01 | 5.09 | 51.3
92.7 | 570
4650 | 39.5
510 | 26.9
56.9 | 21.9 34.5
38.7 >100 | 150.5 | 0.37 | 0.6 | | LE-17-19
LE-17-19 | 2017 | 647768
647769 | | moitier de M4 dans l'échantillor
2-3% SO, 7-10% SO sur 30 cm. | 6.80
11.70 | 7.80
13.20 | 1230
4750 | | 7.39
7.44 | 50
-10 | 31.5
286 | 0.28 | 3.23 | | 1.37 | 0.75 | 3.17
5.47 | 53
89.3 | 4610
3510 | 1360
99.7 | 135 | 84.2 >100
17.5 >100 | 314
161 | 1.13 | 42.1 | | LE-17-19 | 2017 | 647770 | 647769 | Core sample duplicat | 11.70 | | 4010 | | 7.1 | -10 | 299 | 0.22 | 0.32 | 100.5 | 0.15 | 0.39 | 5.72 | 89.4 | 2940 | 53.9 | 21.8 | 18.6 >100 | 138 | 1.6 | 0.9 | | LE-17-19
LE-17-19 | 2017
2017 | 647771
647772 | | | 13.20
14.70 | 14.70
15.60 | 570
460 | | 6.33
6.48 | 10
-10 | 296
228 | 0.11 | 0.16
0.14 | 47.3
42 | 0.35 | 0.64
0.6 | 6.61
6.75 | 148.5
153 | 1980
1810 | 130.5
152.5 | 18.6
23.3 | 13.5 >100
13.7 >100 | 175.5
152 | 3.38
4.13 | 1.3
1.5 | | LE-17-19
LE-17-19 | 2017
2017 | 647773
647774 | | traces SO | 15.60
26.30 | 16.40
27.20 | 197
590 | | 7.33
6.65 | -10
-10 | 343
174 | 0.14 | 0.36
0.35 | 35.7
111.5 | 0.1
0.38 | 0.23 | 7.58
6.1 | 122.5
93.3 | 2420
2520 | 7.8
213 | 5.1
27 | 43.7 >100
18.3 >100 | 312
196 | 2.65
1.61 | 1.1
0.7 | | LE-17-19
LE-17-19 | 2017
2017 | 647775
647776 | | 3-4% SO
3-5% SO | 32.70
46.10 | 33.80
47.10 | 3330
8720 | | 5.8
7.02 | 10
10 | 79.1
68.7 | 0.5
1.98 | 0.26
0.31 | 72
88.5 | 0.83 | 1.84
1.99 | 3.69
2.8 | 39.6
72.7 | 890
830 | 366
230 | 43.7
67.9 | 15.9 55.1
13.4 61.5 | | 0.82
0.59 | 1.1 | | LE-17-19
LE-17-20 | 2017
2017 | 647777
647778 | | vn de QZ translucide, ech pour / | 73.80
29.30 | 74.30
30.30 | 20.1 | | 6.61 | 100 | 78.9 | 1.06 | 0.36 | 8.5 | 2.96 | 1.65 | 3.86 | 29.8 | 800 | 115.5 | 2.2 | 43.3 49.9 | | 2.45 | 0.6 | | LE-17-20
LE-17-20 | 2017
2017 | 647779
647780 | | Blank | 35.90
35.90 | 37.20 | 18
7.3 | | 7.05
8.35 | 140
570 | 59.9
0.94 | 3.99
0.12 | 0.37
4.61 | 24.2
0.74 | 2.98
1.22 | 1.34
2.89 | 4.28
2.53 | 27.8
3.3 | 1060
760 | 233
17.9 | 6.8
0.9 | 60.6 29.6
500 0.36 | | 1.67
2.64 | 0.6
9 | | LE-17-20
LE-17-20 | 2017
2017 | 647784
647781 | | analyse pour l'Or, 7-10% ASPY su | 61.40
94.70 | 62.30
96.20 | 232 | | 7.52 | 30 | 50.3 | 0.25 | 1.21 | 254 | 0.45 | 1.08 | 5.22 | 46.9 | 2130 | 300 | 16.8 | 62.7 95.4 | | 0.66 | 1.4 | | LE-17-20
LE-17-20 | 2017
2017 | 647782
647783 | | | 96.20
97.20 | 97.20
98.20 | 180.5
42.4 | | 7.68
6.6 | 20
20 | 186.5
86.6 | 0.43
0.11 | 1.15
0.28 | 114.5
16.85 | 0.3 | 0.72
0.8 | 5.77
6.79 | 73.4
93.3 | 2690
670 | 182.5
56 | 30.6
25.1 | 44.1 >100
22.1 >100 | 240
207 | 0.84 | 5.6
1.5 | | LE-17-21
LE-17-21 | 2017
2017 | 647785
647786 | | au-aa23, vn QZ
au-aa23, vn QZ | 66.60
68.10 | 68.10
69.10 | LE-17-21
LE-17-22 | 2017 | 647787
647788 | | au-aa23, vn QZ
au-aa23, vn qz | 69.10
21.40 | 69.90
22.50 | 7.7 | | 0.35 | -10 | 0.59 | 0.86 | 0.04 | 0.69 | 0.01 | 4.26 | 0.12 | 3.3 | 20 | 1.9 | 1.2 | 3.6 11.4 | | 0.03 | 0.2 | | LE-17-23
LE-17-23 | 2017 | 647789
647790 | 647700 | au-aa23
Core sample duplicat | 13.00 | 13.60 | 50.7 | | 6.66 | 260 | 68 | 0.86 | 0.42 | 30.8 | 3.45 | 1.19 | 2.93 | 37.1 | 840 | 270 | 6.8 | 89.6 45.5 | | 2.29 | 1.3 | | LE-17-23 | 2017 | 647791 | 047789 | core sample duplicat | 17.30 | 18.40 | 19.7 | | 6.44 | 70 | 98.2 | 4.47 | 0.22 | 46.4 | 3.28 | 1.09 | 3.81 | 38.4 | 880 | 367 | 9.4 | 27.1 25.6 | | 0.8 | 1.3 | | LE-17-23
LE-17-23 | 2017
2017 | 647792
647793 | | | 18.40
20.80 | 19.50
22.30 | 21.3
175 | | 6.9
7.34 | 130
240 | 99.5
97.5 | 4.04
1.71 | 0.22 | 63.5
40 | 4.21
2.73 | 0.35
1.55 | 3.34
3.1 | 43.1
32.7 | 1010
1140 | 448
335 | 11.7
16.6 | 30.2 30
76.6 24.9 | | 1.18
2.83 | 1.4 | | LE-17-23
LE-17-24 | 2017
2017 | 647794
647795 | | pas de spodumène observé | 28.10
16.40 | 28.90
17.30 | 59
31.9 | | 2.45
5.89 | 20
20 | 3
32.9 | 0.16
0.07 | 0.89 | 16.75
53.5 | 0.13 | 6.83
1.82 | 0.4
5.18 | 11.9
70.3 | 2830
1190 | 42.6
29.8 | 8.9
5.3 | 26.3 29.5
30.1 >100 | 494 | 0.07 | 0.7
1.3 | | LE-17-24
LE-17-24 | 2017
2017 | 647796
647797 | | pas de spodumène observé
pas de spodumène observé | 17.30
40.10 | 18.20
41.60 | 53.8
223 | | 4.48
7.07 | 10
30 | 124
303 | 0.19 | 0.73
0.38 | 71.8
82.4 | 0.09 | 0.67
0.87 | 3.44
6.37 | 49.3
89.8 | 2670
1910 | 36.9
268 | 4.6
15.3 | 38.4 >100
31 >100 | 241
160 | 0.19
1.6 | 0.9
1.3 | | LE-17-24
LE-17-24 | 2017
2017 | 647798
647799 | | pas de spodumène observé
pas de spodumène observé | 41.60
43.10 | 43.10
44.70 | 375
222 | | 6.52
6.96 | 10
20 | 395
233 | 0.07
0.36 | 0.22 | 61.9
43.9 | 0.52 | 0.26
0.97 | 6.68 | 87
93.1 | 2070
1640 | 122.5
118 | 4.8
23.7 | 17.6 >100
32.4 80.5 | 158.5 | 2.82
1.8 | 0.7
1.3 | | LE-17-24
LE-17-24 | 2017
2017 | 647800
647951 | | Blank
pas de spodumène observé | 43.10
50.10 | 51.60 | 6.1
144 | | 8.16
5.79 | 570
30 | 0.75
98.3 | 0.13
0.53 | 4.6
0.35 | 0.68
63.5 | 1.2
0.21 | 3.06
0.57 | 2.57
4.99 | 3.3
20.6 | 790
1130 | 15
75.9 | 0.8
8.6 | 500 0.45
40.3 27.6 | | 2.48
1.02 | 9.8
0.4 | | LE-17-24
LE-17-24 | 2017
2017 | 647952
647953 | | pas de spodumène observé
pas de spodumène observé | 51.60
53.10 | 53.10
54.60 | 241
162.5 | | 6.95
7.84 | 10
30 | 232
225 | 0.16
0.29 | 0.27
1.24 | 115
158.5 | 0.34 | 0.4
0.81 | 6.32
6.39 | 81.7
129.5 | 1570
4740 | 130
122.5 | 14.8
23.1 | 29.5 85.8
42.6 >100 | 191.5 | 1.65
2.6 | 1.1
1.5 | | LE-17-24
LE-17-24 | 2017
2017 | 647954
647955 | | pas de spodumène observé
pas de spodumène observé | 54.60
56.10 | 56.10
57.30 | 63.4
80.9 | | 5.78
6.1 | 10
20 | 166.5
79 | 0.26 | 0.23 | 17.35
75.9 | 0.11 | 0.28 | 6.04
4.86 | 74.8
243 | 940
970 | 23.3
83.2 | 5.5
18.2 | 31 96.1
39.3 >100 | 254 | 1.92
0.52 | 0.7 | | LE-17-24
LE-17-24 | 2017 | 647956
647957 | | pas de spodumène observé
pas de spodumène observé | 58.60
60.30 | 59.70
61.70 | 47.5
99 | | 7.09 | 10
70 | 251
325 | 0.47 | 0.79 | 28.3
235 | 0.11 | 0.27 | 6.44 | 71.3
95.8 | 2130
1280 | 32.8
202 | 7.4 | 39.8 95.5
239 >100 | 288 | 2.47 | 0.7 | | LE-17-24
LE-17-24 | 2017 | 647958
647959 | | pas de spodumène observé |
61.70
63.20 | 63.20
64.70 | 83.1
142 | | 7.32
6.89 | 20
10 | 323
266 | 0.27 | 0.6 | 45.1
33.7 | 0.14 | 0.76 | 6.86 | 129.5
147.5 | 2320
1570 | 32.7
25.1 | 4.6
5.6 | 77.4 >100
36.8 >100 | 144
189.5 | 2.43 | 1.3 | | LE-17-24 | 2017 | 647960 | 647959 | pas de spodumène observé
Core sample duplicat | 63.20 | | 227 | | 7.08 | 10 | 250 | 0.45 | 0.38 | 32.1 | 0.16 | 0.63 | 6.68 | 163 | 2220 | 22.9 | 7.3 | 37.9 >100 | 185.5 | 2.11 | 1.4 | | LE-17-24
LE-17-24 | 2017
2017 | 647961
647962 | | pas de spodumène observé
pas de spodumène observé | 64.70
70.30 | 66.00
71.70 | 252
85.3 | | 6.95
7.59 | 20 | 256
299 | 0.1
0.26 | 0.38
0.43 | 40.7
45 | 0.18
0.14 | 0.68
0.22 | 6.81
7 | 112.5
124 | 2520
860 | 26.2
44.1 | 5.8
8.8 | 38.4 >100
113.5 >100 | 213
315 | 2.49
0.68 | 1
1.2 | | LE-17-25
LE-17-25 | 2017
2017 | 375469
375470 | 375469 | non-observé
Core sample duplicat | 64.20
64.20 | 65.70 | 100.5
115 | | 5.44
5.64 | 10
10 | 14.85
23.3 | 0.55
0.32 | 1.18
1.88 | 84.2
126 | 0.1
0.15 | 1.64 | 3.48
3.89 | 15.1
28.8 | 4430
7700 | 54.4
76.8 | 8.9
8.2 | 66.7 53.6
78.8 75.2 | | 0.56
0.84 | 0.5 | | LE-17-25
LE-17-25 | 2017
2017 | 375471
375472 | | non-observé
non-observé | 65.70
107.90 | 66.90
109.40 | 1710
65.2 | | 6.88
6.46 | 120
20 | 61.4
203 | 0.99
0.44 | 5.35 ÷ | >500
30.2 | 1.41
0.16 | 0.6
0.74 | 1.74
6.21 | 51.1 >
69.9 | 10000
1520 | 1060
48.9 | 77.8
5 | 226 >100
31.6 65.2 | 128 | 1.39
0.53 | 2.1
0.8 | | LE-17-25
LE-17-25 | 2017
2017 | 375473
375474 | | non-observé
non-observé | 109.40
110.90 | 110.90
111.80 | 790
1270 | | 7.06
7.58 | 10
30 | 179.5
63.2 | 0.21
0.17 | 0.96
1.97 | 248
>500 | 0.43
1.63 | 1.18
1.05 | 4.55
3.45 | 48.6
66.9 | 3000
5420 | 256
910 | 18.4
60.6 | 69.9 54.5
82.7 67.1 | | 0.71
0.53 | 0.8 | | LE-17-25
LE-17-26 | 2017
2017 | 375475
375467 | | non-observé
non-observé | 111.80
23.00 | 112.70
24.20 | 266
43.2 | | 7.89
7.32 | 20
30 | 157
91.7 | 0.09 | 0.85 | 294
47.9 | 0.61 | 1.24
0.3 | 5.95
6.94 | 73.1
97 | 2080
710 | 321
69.9 | 21.2
10.2 | 48.4 51.8
36.8 >100 | 266 | 0.66
0.58 | 1.1 | | LE-17-26
LE-17-26 | 2017
2017 | 375465
375466 | | non-observé
non-observé | 36.80
38.30 | 38.30
39.90 | 530
94.1 | | 7.56
7.9 | 30
20 | 196
195.5 | 1.39
0.13 | 1.77 ÷ | >500
80 | 1.01
0.58 | 1.43
0.16 | 5.03
7.19 | 32.1
185.5 | 3310
1000 | 710
295 | 62.4
38.6 | 35.5 78.4
26 >100 | 372 | 0.64 | 10.5
2 | | LE-17-26
LE-17-27 | 2017 | 375468
647984 | | traces à 1% spodumène | 108.70 | 110.20
4.50 | 84.9
384 | | 6.62
7.51 | 20 | 76.7
294 | 0.1 | 2.35 | 8.94
64 | 0.23 | 0.16 | 3.78
6.38 | 26.1
120.5 | 8630
1750 | 48.9
198.5 | 10.2
21.9 | 68.9 25.8
18.1 >100 | 140.5 | 0.31 | 0.7 | | LE-17-27
LE-17-27 | 2017 | 647985
647986 | | traces spodumène, 1 lost core.
traces à 1% spodumène | 4.50
6.00 | 6.00
7.50 | 99 | | 7.73
7.56 | -10
10 | 286
348 | 0.06 | 0.42 | 79
91.4 | 0.54 | 0.46 | 6.25
5.31 | 214
135 | 2330 | 288 | 32.2
42.4 | 33 >100
33.2 >100 | 265
146 | 4.09 | 1.9 | | LE-17-27
LE-17-27 | 2017 | 647987
647988 | | TRACES À 1% SPODUMÈNE
TRACES À SPODUMÈNE | 7.50
9.00 | 9.00 | 141
890 | | 6.77
8.15 | 10
40 | 226
135 | 0.12 | 0.2 | 109.5 | 0.93 | 0.82 | 4.98 | 72.2
26.1 | 1050
870 | 460
990 | 43.3 | 24.5 72.1
23.5 23.9 | 140 | 2.08 | 1 0.8 | | LE-17-27 | 2017 | 647989
647990 | | TRACES À SPODUMÈNE | 10.50 | 12.00 | 920 | | 7.08 | -10 | 311
1.02 | 0.06 | 0.21 | 78.1 | 0.5 | 0.62 | 5.83 | 154.5 | 2420 | 209 | 29.6 | 24.1 >100 | 113 | 0.58 | 1.7 | | LE-17-27
LE-17-27 | 2017 | 647991 | | Blank
TRACES À 1% SPODUMÈNE | 10.50
12.00 | 13.30 | 820 | | 7.55
6.77 | 520
-10 | 322 | 0.04 | 0.19 | 0.74
80.7 | 0.47 | 0.67 | 5.97 | 3.2
137 | 2640 | 196.5 | 0.9
24.7 | 16.4 >100 | 171.5 | 2.19 | 8.3
1.1 | | LE-17-27
LE-17-27 | 2017
2017 | 647992
647993 | | 2-3% SPODUMÈNE
1-3% SPODUMÈNE | 13.30
14.80 | 14.80
16.00 | 3320
7640 | | 6.39
7.08 | 10
10 | 269
383 | 0.09
0.12 | 0.13 | 284
282 | 2.22
1.83 | 0.74
1.05 | 3.12
2.5 | 36.7
45.4 | 1110
730 | 1100
850 | 76.2
94.4 | 14.2 35.1
10.9 38.8 | | 0.4
0.41 | 0.9 | | LE-17-27
LE-17-27 | 2017
2017 | 647994
647995 | | NON-OBSERVÉ
TRACES SPODUMÈNE | 16.00
17.50 | 17.50
18.30 | 4830
970 | | 7.43
7.69 | -10
10 | 270
292 | 0.13 | 0.18
0.58 | 84.7
50.4 | 0.56
0.18 | 0.92
0.61 | 4.89
6.43 | 112
97.1 | 1760
3180 | 230
13.8 | 57.1
39.5 | 13.4 >100
26.5 >100 | 150.5
324 | 2.55
2.47 | 1.1
0.7 | | LE-17-27
LE-17-27 | 2017
2017 | 375456
647996 | | i3
1-2% SPODUMÈNE | 18.30
19.10 | 19.10
20.40 | 1580
6400 | | 5.2
7.32 | 90
10 | 28.3
221 | 0.65
0.06 | 6.54 :
0.21 | >500
52.3 | 1.04
0.21 | 0.27
0.75 | 0.43
4.54 | 13.1
86.3 | 540
860 | 1060
59.8 | 139
35 | 28.7 6.43
16.6 100 | 106 | 0.95
2.37 | 0.7 | | LE-17-27
LE-17-27 | 2017
2017 | 647997
375457 | | NON-OBSERVÉ | 20.40
21.50 | 21.50
23.00 | 920
1800 | | 7.71
6.65 | 10
80 | 285
1.52 | 0.08
0.18 | 0.53
5.29 | 45.5
341 | 0.24 | 0.6
0.42 | 6.38
1.6 | 92.8
3.5 | 2210
600 | 81.7
140 | 16.9
4.9 | 26.9 >100
122.5 0.6 | 208 | 2.64
0.51 | 0.8 | | LE-17-27
LE-17-27 | 2017
2017 | 375458
375459 | | | 23.00
24.00 | 24.00
25.00 | 2170
1530 | | 7.35
7.18 | 140
130 | 18.5
16.95 | 0.2
0.22 | 4.52 :
4.21 : | >500 | 0.96
1.33 | 0.32
0.44 | 1.88 | 12.2
10.6 | 1590
1270 | 510
840 | 11.5
33 | 141 60.2
113.5 54.8 | | 0.55
0.41 | 1
0.6 | | LE-17-27
LE-17-27 | 2017
2017 | 375460
647998 | | Blank
TRACES À 1% | 24.00
25.00 | 25.70 | 9.1
2410 | | 7.82
8.01 | 550
20 | 0.75
317 | 0.13
0.17 | 4.55
0.61 | 2.17
193 | 1.13
0.37 | 2.81
0.98 | 2.41
5.64 | 3.4
238 | 730
1800 | 15.8
174.5 | 1
24.9 | 491 0.26
32.8 >100 | 202 | 3.01
1.68 | 9.1
2 | | LE-17-27
LE-17-27 | 2017
2017 | 375461
375462 | | | 25.70
27.00 | 27.00
27.80 | 1630
1900 | | 7.29
7.55 | 80
60 | 3.78
14.4 | 0.2
0.27 | 5.98
5.44 | 390
>500 | 0.57 | 0.43
1.86 | 1.59
1.36 | 4.1
11.3 | 570
850 | 246
600 | 6.8
44.7 | 108.5 4.57
111.5 8.57 | | 0.37
0.46 | 0.5 | | LE-17-27
LE-17-27 | 2017
2017 | 647999
648000 | 647999 | 1-2% SPODUMÈNE
Core sample duplicat | 27.80
27.80 | 28.50 | 5140
3110 | | 8.48
8.38 | 30
10 | 113.5
141 | 0.26 | 0.72 | 136
149 | 0.36
0.31 | 1.47
1.83 | 5.07
5.66 | 85.6
90.6 | 1940
2170 | 161
151.5 | 37.6
30.5 | 35.8 >100
38.4 >100 | 160
145.5 | 1.6
1.84 | 1.4
1.6 | | LE-17-27
LE-17-27 | 2017 | 375451
375452 | 047333 | 3-5% SPODUMÈNE
7-10% SPODUMÈNE | 33.20
34.70 | 34.70
35.70 | 5760
>10000 | 1.325 | 7.07 | 10
30 | 125
109.5 | 0.08 | 0.21 | 168
151.5 | 2.24 | 1.72 | 3.25 | 57.4
55.9 | 910
500 | 1090
830 | 74.4
84.4 | 13.6 61.4
10.5 38.5 | 143.3 | 0.56 | 1.2 | | LE-17-27 | 2017 | 375453 | | 3-5% SPODUMÈNE | 35.70 | 36.60 | 8360 | 1.323 | 7.57 | 80 | 187.5 | 0.44 | 0.74 | 107 | 0.96 | 0.94 | 3.43 | 41.9 | 650 | 373 | 74.8 | 30.3 38.5 | | 0.5 | 0.7 | | LE-17-27
LE-17-27 | 2017 | 375463
375454 | | NON-OBSERVÉ | 36.60
59.50 | 38.10
61.10 | 610
760 | | 8.24
7.54 | 20
80 | 193
14.05 | 0.06 | 0.87
5.98 | 406
75 | 1.73
0.78 | 0.64 | 3.9
1.85 | 60.1 | 1900
1540 | 1170
220 | 162.5
35.5 | 118.5 7.34 | | 0.8 | 2.6 | | LE-17-28
LE-17-28 | 2017
2017 | 647963
647964 | | 1% SPODUMÈNE
1% SPODUMÈNE | 10.50
11.60 | 11.60
12.70 | 1160
57.2 | | 6.85
7.17 | 40
30 | 127.5
171 | 0.38
0.07 | 0.25 | 92.1
51.6 | 1.55
0.3 | 0.6
0.72 | 5.3
6.37 | 110
145.5 | 740
710 | 510
94.4 | 35.1
3.7 | 40.8 >100
92.2 >100 | 191
165 | 0.65
1.49 | 1.3
1.5 | | LE-17-28
LE-17-28 | 2017
2017 | 647965
647966 | | NON-OBSERVÉ, I1D
NON-OBSERVÉ | 20.10
21.60 | 21.60
22.50 | 313
670 | | 7.3
6.61 | 10
10 | 240
309 | 0.1
0.26 | 0.45
0.19 | 31.2
59 | 0.32 | 0.5
0.7 | 6.68
5.37 | 124
103 | 2600
1230 | 129.5
292 | 23
38.8 | 41.8 >100
15.8 88.3 | 173 | 2.06
1.18 | 1.3 | | LE-17-28
LE-17-28 | 2017
2017 | 647967
647968 | | 3-5% spodumène
non-observé | 22.50
30.00 | 24.00
30.50 | 5780
9900 | | 7.57
7.38 | 20
20 | 231
88.4 | 0.18
0.34 | 0.84
0.65 | 244
156.5 | 0.51
0.36 | 0.8
1.04 | 4.31
3.2 | 89.9
55.6 | 4640
5010 | 320
234 | 65
93.7 | 35.2 >100
85 100 | 173.5
105.5 | 1.93
0.36 | 1.1
1.5 | | LE-17-28
LE-17-28 | 2017
2017 | 375455
647969 | | schiste à BO. M8
2-3% spodumène | 30.50
32.00 | 32.00
33.00 | 4250
4650 | | 6.56
6.72 | 10
10 | 27.3
122 | 0.16
0.13 | 1.39 :
0.38 | >500
273 | 2.73
0.7 | 0.69
0.82 | 0.53
3.12 | 80.8
60.3 | 5040
1480 | 2830
460 | 160
83.7 | 29.7 >100
27.5 86.1 | 205 | 0.92
0.76 | 1.5
1.5 | | LE-17-28
LE-17-28 | 2017 | 647970
647971 | | Blank
3-5% spodumène | 32.00
33.00 | 34.50 | 10.5
>10000 | 1.17 | 7.84 | 560
-10 | 0.85 | 0.12 | 4.58
0.14 | 0.89
75.8 | 1.15 | 3.15
1.16 | 2.44 | 3.5
91.5 | 730
1000 | 15.3
125.5 | 1.1 | 495 0.3
16.3 55.4 | | 2.53 | 10.6 | | LE-17-28
LE-17-28 | 2017 | 647972
647973 | | non-observé | 34.50
35.80 | 35.80
37.30 | 1420
2980 | | 6.7
7.61 | -10
10 | 314
183.5 | 2.64 | 0.25 | 66.4
64
| 0.43 | 0.79 | 5.97
5.51 | 117.5
98.8 | 2290
2190 | 150
221 | 27.7
36.7 | 42.4 >100
36.1 100 | 152.5
102.5 | 2.66
1.33 | 1.1 | | LE-17-28
LE-17-28 | 2017 | 647974
647975 | | 5-7% spodumène
5-7% spodumène | 40.90
42.40 | 42.40
43.90 | >10000 | 1.445 | 8.25
7.79 | 10
50 | 77.1
40.1 | 0.17 | 0.31 | 72 | 0.12 | 1.17 | 3.13 | 72.6
17.8 | 590
970 | 56.9
530 | 86.5
116.5 | 29.1 >100
61.5 47.9 | 179.5 | 0.51 | 1.1 | | LE-17-28
LE-17-28 | 2017 | 647976
647977 | | 3-5% spodumène
traces à 1% spodumène | 43.90
45.40 | 45.40
46.00 | >10000
3540 | 1.155 | 7.27
6.53 | 20
-10 | 149
212 | 1.63 | 0.29 | 125.5
51.9 | 0.33 | 1.54
0.91 | 2.87 | 93
118.5 | 870
1920 | 152
148.5 | 67.9
41.2 | 19.4 77.5
12.2 >100 | 159 | 0.89 | 1 | | LE-17-28 | 2017 | 647978 | | 5-7% spodumène | 46.00 | 47.00 | 7960 | | 7.09 | 10 | 142.5 | 1.83 | 0.35 | 132.5 | 0.77 | 1.78 | 2.46 | 84.1 | 1440 | 373 | 90.1 | 16.2 63 | | 2.25 | 1.7 | | LE-17-28
LE-17-28 | 2017 | 647979
647980 | 647979 | 5% spodumène
Core sample duplicat | 51.30
51.30 | 52.80 | 5620
5510 | | 7.01 | 70
60 | 106.5
51 | 0.07 | 0.95
1.4 | 113.5
107 | 1.94 | 1.1 | | 137
500 | 1830
4150 | 710
680 | 53.3
57.7 | 37.6 >100
46.1 >100 | 172
637 | 1.12
3.34 | 1.9
5.6 | | LE-17-28
LE-17-28 | 2017 | 647981
647983 | | 1-2% SPODUMÈNE
traces à 1% SO | 72.80
73.70 | 73.70
74.90 | 208
790 | | 7.06 | 10
10 | 33.5
83.6 | 0.05 | 0.93
1.32 | 69.3
148 | 0.44 | 0.73 | 4.82
3.93 | 41.2
68 | 770
3640 | 248
540 | 31.7
106 | 35.5 34.9
30.8 100 | 123 | 1.06 | 1.1 | | LE-17-28
LE-17-28 | 2017
2017 | 375464
647982 | | i3
non-obsevé | 74.90
75.90 | 75.90
76.60 | 1040
100 | | 6.04
7.36 | 90
10 | 18.9
47.8 | 0.41 | 4.39 ÷
0.63 | >500
73.6 | 1.05
0.58 | 1.71
0.78 | 0.87
5.64 | 6.2
59.7 | 940
900 | 900
367 | 126
66.6 | 69.2 3.08
19.6 93.4 | | 0.68
0.64 | 0.8
1.6 | LE-17-29 | 2017 | 375476 | | 5-7% spodumène | 9.60 | 10.80 | 4350 | | 6.71 | 10 | 130.5 | 0.05 | 0.6 | 30.7 | 0.14 | 1.79 | 4.65 | 68.4 | 1670 | 32.2 | 28.2 | 27.7 | 90.5 | | 0.77 | 0.8 | |----------------------|--------------|------------------|--------|----------------------------------|----------------|----------------|----------------|-------|------|-----------|-------------|-------|---------|---------------|------|--------------|-------------|--------------|--------------|------------|--------------|--------------|--------------|-------|------|-----| | LE-17-29 | 2017 | 375477 | | M16 | 10.80 | 12.30 | 1390 | | 5.49 | 80 | 15.95 | 0.62 | 6.48 > | 600 | 0.7 | 0.4 | 0.73 | 9 | 860 | 510 | 51.8 | 80.4 | 7.8 | | 0.72 | 0.7 | | LE-17-29 | 2017 | 375478 | | M16 | 12.30 | 13.20 | 2440 | | 6.04 | 50 | 12.95 | 0.39 | 5.72 >5 | 600 | 0.62 | 0.4 | 0.74 | 5.7 | 640 | 417 | 35.7 | 149.5 | 5.98 | | 0.55 | 0.7 | | LE-17-29 | 2017 | 375479 | | non-observé | 13.20 | 14.70 | 163 | | 7.05 | -10 | 413 | 0.38 | 0.36 | 52.7 | 0.26 | 0.67 | 6.72 | 113 | 2490 | 81.1 | 9.9 | 22.5 > | 100 | 129.5 | 2.46 | 0.8 | | LE-17-29 | 2017 | 375480 | | Blank | 13.20 | | 7 | | 8.3 | 570 | 0.81 | 0.12 | 4.64 | 0.72 | 1.22 | 3.55 | 2.53 | 3.2 | 740 | 16 | 0.8 | 501 | 0.24 | | 2.95 | 9 | | LE-17-29 | 2017 | 375481 | | traces | 14.70 | 16.20 | 327 | | 6.9 | -10 | 303 | 1.34 | 0.36 | 63 | 0.55 | 0.94 | 5.95 | 123.5 | 2580 | 244 | 26.6 | 51.6 > | 100 | 148.5 | 3.46 | 1 | | LE-17-29 | 2017 | 375482 | | traces | 16.20 | 17.70 | 810 | | 6.21 | -10 | 322 | 0.2 | 0.22 | 61.6 | 0.45 | 1.07 | 5.7 | 205 | 2670 | 223 | 27.2 | 21.4 > | 100 | 189 | 1.14 | 1.6 | | LE-17-29 | 2017 | 375483 | | traces | 17.70 | 19.20 | 2710 | | 6.02 | -10 | 322 | 8.46 | 0.16 | 56.1 | 0.44 | 1.77 | 5.35 | 142 | 2270 | 202 | 35.7 | 11.5 > | 100 | 152.5 | 1.22 | 1.2 | | LE-17-29 | 2017 | 375484 | | 3% spodumène | 19.20 | 20.70 | >10000 | 1.215 | 6.92 | -10 | 178.5 | 7.91 | 0.1 | 64.2 | 0.42 | 1.95 | 2.53 | 99.9 | 1100 | 226 | 71.9 | 5.6 | 71.8 | | 1.22 | 1 | | LE-17-29 | 2017 | 375485 | | traces à 1% spodumène | 20.70 | 21.70 | 8170 | | 6.75 | -10 | 148 | 4.49 | 0.12 | 58 | 0.4 | 2.05 | 3.71 | 133 | 1570 | 193 | 50.2 | 9.1 | 89.6 | | 1.37 | 1.3 | | LE-17-29 | 2017 | 375486 | | 3% spodumène | 21.70 | 23.20 | 4620 | | 6.33 | -10 | 216 | 4.88 | 0.15 | 54.1 | 0.4 | 1.13 | 4.88 | 91.3 | 1810 | 168 | 35.9 | 10.2 | 76.9 | | 0.8 | 0.9 | | LE-17-29 | 2017 | 375487 | | non-observé | 23.20 | 24.70 | 3040 | | 6.47 | -10 | 288 | 11.5 | 0.16 | 67.1 | 0.46 | 1.29 | 5.38 | 140.5 | 1990 | 207 | 33.9 | 12.2 > | 100 | 119.5 | 0.93 | 1.2 | | LE-17-29 | 2017 | 375488 | | 3-5% spodumène | 24.70 | 26.20 | >10000 | 1.505 | 7.33 | -10 | 118.5 | 0.43 | 0.15 | 48.2 | 0.42 | 2.83 | 1.75 | 105.5 | 1940 | 216 | 64.4 | 7.3 | 76.3 | | 0.92 | 1.4 | | LE-17-29 | 2017 | 375489 | | 10-12% spodumène | 26.20 | 27.70 | 3230 | | 6.62 | -10 | 189.5 | 0.95 | 0.13 | 73.9 | 0.63 | 1.31 | 4.91 | 98.9 | 1080 | 316 | 45.5 | 7.2 | 67.2 | | 1.22 | 1.1 | | LE-17-29 | 2017 | 375490 | 375489 | Core sample duplicat | 26.20 | | 3970 | | 6.42 | -10 | 191 | 1.15 | 0.13 | 66.5 | 0.59 | 1.27 | 4.52 | 123 | 1270 | 280 | 44.3 | 8.3 | 85.1 | | 1.2 | 1.3 | | LE-17-29 | 2017 | 375491 | | 1-2% spodumène | 27.70 | 29.20 | 6740 | | 6.67 | -10 | 285 | 2.34 | 0.14 | 50.7 | 0.43 | 1.89 | 3.87 | 123 | 2130 | 194.5 | 59 | 10.4 > | 100 | 123 | 1.06 | 1.1 | | LE-17-29 | 2017 | 375492 | | 1-2% spodumène | 29.20 | 30.70 | 4270 | | 6.74 | -10 | 487 | 0.48 | 0.24 | 81.1 | 0.53 | 1.19 | 4.65 | 190 | 4030 | 280 | 49.2 | 18.8 > | 100 | 174.5 | 2.22 | 1.7 | | LE-17-29 | 2017 | 375493 | | 1-2% spodumène | 30.70 | 32.20 | 2190 | | 7.46 | -10 | 391 | 0.07 | 0.21 | 119.5 | 1.04 | 1.06 | 4.28 | 148 | 1630 | 600 | 82.2 | 18.6 > | | 100.5 | 2.97 | 1.8 | | LE-17-29 | 2017 | 375494 | | 1% spodumène | 32.20 | 33.70 | 1920 | | 6.55 | -10 | 241 | 0.09 | 0.19 | 58.3 | 0.56 | 2.11 | 5.1 | 176.5 | 2310 | 297 | 40.6 | 18.8 > | | 147.5 | 3.04 | 1.8 | | LE-17-29 | 2017 | 375495 | | non-observé | 33.70 | 35.20 | 308 | | 6.3 | -10 | 231 | 0.11 | 0.17 | 51.8 | 0.5 | 0.82 | 6.25 | 192.5 | 1940 | 224 | 25.9 | 16.3 > | 100 | 175 | 6.35 | 1.4 | | LE-17-29 | 2017 | 375496 | | 3-5% spodumène | 35.20 | 36.10 | 4510 | | 8.09 | 10 | 222 | 0.12 | 0.71 > | | 0.68 | 1.25 | 4.59 | 103.5 | 3600 | 640 | 47.8 | 24 > | | 137.5 | 2.97 | 1.4 | | LE-17-29 | 2017 | 375497 | | M16 | 36.10 | 37.10 | 1620 | | 4.15 | 20 | 17.95 | 0.5 | 3.52 >5 | | 2.29 | 4.73 | 0.28 | 18.1 | 620 | 2620 | 37 | 21.4 | 76.4 | | 0.57 | 0.5 | | LE-17-29 | 2017 | 375498 | | M16 | 37.10 | 37.90 | 1280 | | 3.54 | 20 | 13.35 | 0.36 | 2.8 >5 | 00 | 3.02 | 0.16 | 0.06 | 9.4 | 70 | 3560 | 26.1 | 3.4 | 12.15 | | 0.45 | 0.3 | | LE-17-29 | 2017 | 375499 | | 3-5% spodumène | 37.90 | 39.40 | 6380 | | 6.93 | -10 | 191 | 0.12 | 0.23 | 81.1 | 0.42 | 1.38 | 3.97 | 65.2 | 1380 | 245 | 76.3 | | 100 | 124.5 | 1.34 | 0.8 | | LE-17-29 | 2017 | 375500 | | Blank | 37.90 | | 7.1 | | 8.33 | 570 | 0.79 | 0.12 | 4.68 | 0.7 | 1.21 | 3.24 | 2.54 | 3.1 | 760 | 14.1 | 0.8 | 511 | 0.23 | | 2.57 | 8.6 | | LE-17-29 | 2017 | 877451 | | 10% spodumène | 39.40 | 40.40 | >10000 | 1.415 | 7.55 | -10 | 168 | 0.05 | 0.11 | 109 | 0.18 | 2.52 | 2.47 | 61.9 | 560 | 83.5 | 112.5 | 12.3 | 76 | | 1.08 | 0.8 | | LE-17-29 | 2017 | 877452 | | non-observé | 40.40 | 41.40 | 2590 | | 5.21 | 10 | 156.5 | 1.09 | 3.02 > | | 1.23 | 0.59 | 2.23 | 67.5 | 6740 | 1090 | 45.9 | 18.3 | 96.2 | | 2.03 | 1 | | LE-17-29 | 2017 | 877453 | | non-observé | 41.40 | 42.40 | 930 | | 2.46 | 10 | 14.05 | 0.31 | 3.59 > | | 2.03 | 0.13 | 0.05 | 6.1 | 310 | 1830 | 47 | 6.8 | 2.49 | | 0.35 | 0.5 | | LE-17-29 | 2017 | 877454 | | 3-5% spodumène | 42.40 | 43.30 | 9970 | | 8.71 | 10 | 252 | 0.06 | 0.88 | 108 | 0.15 | 1.23 | 4.15 | 91.5 | 2620 | 51.5 | 36.7 | 28.2 | 70.1 | | 1.29 | 1.1 | | LE-17-29 | 2017 | 877455 | | 3-5% spodumène | 52.30 | 53.80 | 5860 | | 6.57 | 10 | 33.4 | 0.22 | 0.15 | 115.5 | 0.57 | 2.19 | 3.15 | 51.7 | 420 | 305 | 85.7 | 13.5 | 47.3 | | 0.35 | 1.3 | | LE-17-29 | 2017 | 877456 | | | 53.80 | 55.30 | 5670 | | 7.03 | -10 | 128.5 | | 0.17 | 151.5 | 1.27 | 1.77 | 3.74 | 37.7 | 810 | 550 | 71.5 | 16.5 | 37.8 | | 0.74 | 0.9 | | LE-17-29 | 2017 | 877457 | | | 55.30 | 56.80 | 8340 | | 8 | 20 | 12.2 | 0.59 | 0.13 | 327 | 4.67 | 1.34 | 1.58 | 257 | 870 | 1720 | 64 | 19.9 > | 100 | 267 | 0.29 | 2.9 | | LE-17-29 | 2017 | 877458 | | | 56.80 | 58.10 | 8740 | | 7.37 | 10 | 129 | 1.6 | 0.59 | 445 | 1.74 | 1.76 | 1.74 | 64.1 | 1450 | 780 | 75.9 | 21.4 | 86.5 | | 0.5 | 1.3 | | LE-17-29 | 2017 | 877459 | | 3-5% spodumène | 65.50 | 66.00 | 2480 | | 7.01 | 20 | 191 | 0.1 | 1.32 | 159 | 0.52 | 1.07 | 4.22 | 90.5 | 5440 | 268 | 51.7 | 27.9 | 64.2 | | 0.6 | 1.9 | | LE-17-30 | 2017 | 877460 | | 3-5% SPODUMÈNE | 6.80 | 8.30 | >10000 | 1.285 | 6.89 | 20 | 87.3 | 0.71 | 0.28 | 62 | 0.41 | 1.13 | 2.2 | 64.4 | 1020 | 213 | 78.5 | 11 | 46.6 | | 0.44 | 1 | | LE-17-30 | 2017 | 877461 | | 7-10% spodumène | 8.30 | 9.80 | >10000 | 1.57 | 6.4 | 20 | 72.1 | 0.4 | 0.07 | 121 | 0.74 | 2.15 | 0.47 | 62.1 | 830 | 412 | 142.5 | 6.9 | 42.4 | | 0.21 | 1.3 | | LE-17-30 | 2017 | 877462 | | 5-7% spodumène | 9.80 | 11.30 | >10000 | 1.265 | 6.78 | 100 | 139.5 | 1.54 | 0.11 | 139.5 | 0.9 | 1.28 | 1.4 | 62.7 | 690 | 392 | 109 | 20.3 | 44.9 | | 0.4 | 0.9 | | LE-17-30 | 2017 | 877463 | | 5-7% spodumène | 11.30 | 12.80 | 9590 | | 7.1 | -10 | 163.5 | 0.57 | 0.16 | 74.5 | 0.43 | 1 | 3.12 | 76 | 1220 | 247 | 83.7 | 9.4 | 75.2 | | 0.65 | 0.9 | | LE-17-30 | 2017
2017 | 877464
877465 | | 10-12% spodumène | 12.80
14.30 | 14.30 | >10000
9060 | 1.37 | 7.24 | 10
-10 | 64.5
143 | 0.19 | 0.07 | 118.5
74.2 | 0.97 | 1.13 | 0.77 | 60.2 | 460 | 600 | 145.5 | 5.1 | 44.1
97.9 | | 0.57 | 1.7 | | LE-17-30 | 2017 | 877466 | | 5-7% spodumène | 15.80 | 15.80
17.30 | 9060
8740 | | 6.97 | -10
90 | 115.5 | 0.16 | 0.19 | 96.2 | 0.51 | 1.22
0.99 | 3.26
2.9
| 105
72.5 | 1380
1240 | 277
289 | 80.9
89.3 | 11.9
13.5 | 70 | | 0.62 | 1.2 | | LE-17-30
LE-17-30 | 2017 | 877467 | | 3-5% spodumène
1-3% spodumène | 17.30 | 18.80 | 9660 | | 7.03 | -10 | 153.5 | 0.09 | 0.22 | 68.2 | 0.45 | 0.99 | 2.62 | 117.5 | 1390 | 233 | 77.9 | 13.5 | 89.7 | | 1.26 | 1.2 | | LE-17-30
LE-17-30 | 2017 | 877468 | | 1-3% spodumène | 18.80 | 20.30 | 7790 | | 6.57 | -10 | 183.5 | 15.15 | 0.14 | 64.1 | 0.45 | 0.74 | 3.52 | 79.4 | 1200 | 249 | 77.9 | 6.6 | 62.6 | | 0.93 | 0.9 | | LE-17-30
LE-17-30 | 2017 | 877469 | | traces à 1% | 20.30 | 21.80 | 3420 | | 6.35 | 20 | 190 | 8.26 | 0.13 | 50.5 | 0.51 | 0.69 | 4.74 | 79.4
88.3 | 1450 | 239 | 41.8 | 31.5 | 57.3 | | 1.94 | 0.9 | | LE-17-30
LE-17-30 | 2017 | 877470 | | traces à 1% | 21.80 | 23.30 | 6770 | | 6.75 | -10 | 211 | 4.57 | 0.23 | 46.9 | 0.55 | 0.09 | 3.84 | 101.5 | 1450 | 201 | 54.8 | 11.5 | 77.9 | | 1.52 | 1 | | LE-17-30 | 2017 | 877470 | 877470 | | 21.80 | 23.30 | 6920 | | 6.58 | -10 | 208 | 3.44 | 0.19 | 40.9 | 0.42 | 0.73 | 3.81 | 107.3 | 1410 | 175.5 | 53.1 | 11.6 | 83 | | 1.43 | 1 | | LE-17-30
LE-17-30 | 2017 | 877471 | 8//4/0 | 1% spodumène | 23.30 | 24.80 | 1450 | | 6.54 | -10 | 250 | 0.93 | 0.19 | 55.6 | 0.42 | 0.94 | 5.94 | 148.5 | 2110 | 226 | 34.2 | 41.9 > | | 126 | 3.17 | 1.3 | | LE-17-30 | 2017 | 877473 | | traces à 1% | 24.80 | 26.30 | 347 | | 6.73 | -10 | 287 | 0.93 | 0.25 | 61.6 | 0.5 | 0.56 | 6.45 | 137.5 | 1870 | 203 | 30.1 | 24.9 > | | 143.5 | 3.78 | 1.4 | | LE-17-30 | 2017 | 877474 | | non-observé | 26.30 | 27.00 | 154.5 | | 7.41 | 10 | 294 | 0.00 | 0.45 | 56.8 | 0.28 | 0.91 | 6.78 | 118.5 | 2330 | 91.2 | 14.5 | 34.2 | | 144.5 | 3.09 | 0.9 | | LE-17-30 | 2017 | 877475 | | 7-10% spodumène | 39.30 | 40.80 | >10000 | 1.22 | 7.23 | 10 | 167 | 0.03 | 0.43 | 149 | 0.71 | 0.84 | 2.43 | 61.3 | 1130 | 375 | 119 | 9.8 | 74 | 144.3 | 0.98 | 1.1 | | LE-17-30 | 2017 | 877476 | | 3-5% spodumène | 40.80 | 42.30 | 8990 | 1.1.1 | 7.29 | 20 | 113 | 5.57 | 0.34 | 157.5 | 1.78 | 1.14 | 2.5 | 83.3 | 2060 | 730 | 81.9 | 15.4 | 62.7 | | 0.57 | 1.4 | | LE-17-30 | 2017 | 877477 | | 3-5% spodumène | 48.50 | 50.00 | 3450 | | 6.31 | 10 | 165.5 | 0.14 | 0.34 | 124 | 2.06 | 0.82 | 4.22 | 79.9 | 1410 | 770 | 34.4 | 17.1 | 62.4 | | 0.61 | 0.9 | | LE-17-30 | 2017 | 877477 | | 1% spodumène | 55.50 | 56.50 | 2410 | | 8.1 | 10 | 204 | 0.06 | 0.43 | 70.5 | 0.66 | 1.25 | 5.41 | 102.5 | 2380 | 342 | 74.3 | 47.1 > | | 174.5 | 1.58 | 1.8 | | LE-17-31
LE-17-31 | 2017 | 877479 | | non-observé | 56.50 | 57.60 | 264 | | 6.41 | -10 | 313 | 0.06 | 0.43 | 28.4 | 0.00 | 0.77 | 6.95 | 126.5 | 2400 | 16.4 | 18.2 | 30.5 > | | 272 | 2.86 | 1.0 | | LE-17-31 | 2017 | 877480 | | Blank | 56.50 | 37.00 | 7.5 | | 8.58 | 590 | 0.8 | 0.12 | 4.75 | 0.76 | 1.28 | 3.07 | 2.62 | 3.3 | 780 | 17.7 | 0.9 | 518 | 0.25 | 2/2 | 2.42 | 8.8 | | LE-17-31
LE-17-31 | 2017 | 877481 | | 1-2% spodumène | 60.70 | 62.00 | 1380 | | 5.89 | 20 | 132.5 | 0.12 | 0.8 | 146 | 0.36 | 2.24 | 3.51 | 57.4 | 2200 | 254 | 23 | 37.4 | 78.6 | | 1.11 | 0.6 | | LE-17-31 | 2017 | 877482 | | 3-5% spodumène | 62.00 | 63.00 | 8830 | | 7.78 | 50 | 11.7 | 0.22 | 0.8 | 50.3 | 0.34 | 2.25 | 4.12 | 30 | 2800 | 179.5 | 58 | 17 | 20.9 | | 0.35 | 0.6 | | LE-17-31 | 2017 | 877483 | | 3-5% spodumène | 71.70 | 73.00 | 5730 | | 7.01 | 30 | 105.5 | 0.12 | 0.65 | 160.5 | 0.34 | 41.3 | 4.07 | 80.7 | 2100 | 189 | 81.7 | 28.3 > | | 131 | 1.3 | 1.3 | | | / | - | # APPENDIX 2. JORC Code (2012) Table 1 Report: Diamond Drilling, Lemare SW Extension, Quebec, Canada, June 2017 **Section 1: Sampling Techniques and Data** | Criteria | JORC Code explanation | Commentary | | | | | | |--------------------------------|--|---|--|--|--|--|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. | Half-core samples, cut by diamond core saw, were collected from selected intervals, mostly spodumene-bearing pegmatites, from 15 holes LE-17-17 to LE-17-31. NQ coring occurred from surface to end of hole. | | | | | | | | Include reference to measures taken to ensure sample representativeness and the appropriate calibration of any measurement tools or systems used. | Continuous half-core (NQ) samples were taken from intervals selected on rock type (host amphibolites vs pegmatite) and determined on variation in mineralogy (mainly on spodumene content). | | | | | | | | Aspects of the determination of mineralisation that are Material to the Public Report. | Samples were sent to ALS Chemex laboratories in Val d'Or, Quebec, Canada for sample preparation and analysis for Li and a suite of elements by 4 acid digest ICP-MS method ME-MS61. Overlimit Li was reassayed by ore grade 4 acid digest ICP-AES method Li-OG63. | | | | | | | | In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Continuous half-core (NQ) samples were taken from intervals selected on rock type (host amphibolites vs pegmatite) and determined on variation in mineralogy (mainly on spodumene content). | | | | | | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | All holes were drilled NQ core size from surface, without pre-collars, inclined at -50° with orientation measurements taken down hole. Maximum hole depth was 174 m. | | | | | | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. | Overall recoveries we>95% without significant core loss. Core was reconstructed into continuous runs and measured lengths checked against core block depths. | | | | | | | | Measures taken to maximise sample recovery and ensure representative nature of the samples. | n/a | | | | | | | | Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | There is no evident correlation between sample recovery and lithium grade. | | | | | | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. | Core was geologically logged on the basis of geological and mineralogical variation and sampled at appropriate intervals, not longer than 1.5 m, targeting pegmatite and more specifically spodumene mineralisation. | | | | | | | | Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. | Interalisation. Logging was qualitative and semi-quantitative and recorded rock type, mineralogy, veining, alteration, colour, weathering and rock types using a standardised logging system. All core was photographed. | | | | | | | | The total length and percentage of the relevant intersections logged. | All holes were logged over their entire length. | | | | | | | Sub-
sampling
techniques | If core, whether cut or sawn and whether quarter, half or all core taken. | Core (NQ) was split in half using a hydraulic core splitter, with half-core samples collected. Samples were generally not taken from the host rock. | | | | | | | and sample
preparation | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. | N/A | | | | | | | | For all sample types, the nature, quality and appropriateness of the sample preparation technique. | Samples were sent to ALS Minerals laboratories in Val d'Or, Quebec, Canada, where the entire sample was crushed to 70% - 2 mm, then a 1kg split taken by Boyd Rotary Splitter and pulverised to 85% passing 75 microns or better. | | | | | | | | Quality control procedures adopted for all sub-sampling stages to maximise representativeness of samples. | No external QC was applied. Half core is considered appropriate for representativeness of samples. | | | | | | | | Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. | Field duplicate samples of second core-half and blanks were submitted approximately every 20 samples for each hole. | | | | | | | |--
--|---|--|--|--|--|--|--| | Quality of | Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying | Spodumene mineralisation was readily discernible and largely consistent through the sampled intervals with sample size regarded as appropriate for the material. Samples were sent to ALS Chemex laboratories in Val | | | | | | | | assay data
and
laboratory
tests | and laboratory procedures used and whether the technique is considered partial or total. | d'Or, Quebec, Canada for sample preparation and analysis for Li and a suite of elements by 4 acid digest ICP-MS method ME-MS61. Overlimit Li was reassayed by ore grade 4 acid digecst ICP-AES method Li-OG63. These methods are taken to provide a total analysis. | | | | | | | | | For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | Not applicable, no instruments used. | | | | | | | | | Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Field duplicate samples of second core-half and blanks were submitted approximately every 20 samples for each hole. | | | | | | | | Verification
of sampling
and
assaying | The verification of significant intersections by either independent or alternative company personnel. | A minimum of 2 company geologists have verified significant intersections. | | | | | | | | | The use of twinned holes. | No twinned holes were drilled. | | | | | | | | | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. | Drill hole data and geological logs are recorded on paper in the field then entered into digital format before being uploaded to the company SQL database. | | | | | | | | | Discuss any adjustment to assay data. | For public reporting purposes, elemental Li values reported in ppm were converted to a percent (%) and then to the oxide Li ₂ O by using a multiplication factor of 2.153. | | | | | | | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. | Drill hole coordinates were determined using a hand-
held GPS. Each drill hole had downhole surveys
approximately every 30 m. | | | | | | | | | Specification of the grid system used. | UTM zone 18, NAD83 | | | | | | | | | Quality and adequacy of topographic control. | RL determined using hand held GPS | | | | | | | | Data
spacing and | Data spacing for reporting of Exploration Results. | Holes were drilled on nominal 50 m sections. | | | | | | | | distribution | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | The drilling is first-pass and not at a stage where a Mineral Resource estimation is appropriate. | | | | | | | | | Whether sample compositing has been applied. | No sample compositing was applied. | | | | | | | | Orientation of data in relation to geological | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. | The holes were drilled at a dip of 50 degrees and perpendicular to the strike of the sub-vertical pegmatite unit (s). The drill orientation is considered appropriate and is not considered to have introduced a bias. | | | | | | | | structure | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | The holes were drilled at a dip of 50 degrees and perpendicular to the strike of the sub-vertical pegmatite unit(s). The drill orientation is considered appropriate and is not considered to have introduced a bias. | | | | | | | | Sample
security | The measures taken to ensure sample security. | Samples were bagged and bulk-packaged securely and couriered by road to the laboratory in Val d-Or. | | | | | | | | | | | | | | | | | **Section 2: Reporting of Exploration Results** | Criteria | JORC Code explanation | Commentary | | | | | | |--|---|--|--|--|--|--|--| | Mineral tenement and
land tenure status | Type, reference name/number, location
and ownership including agreements or material
issues with third parties such as joint ventures,
partnerships, overriding royalties, native title
interests, historical sites, wilderness or national
park and environmental settings. | The Lemare Lithium project is located in the James Bay region of Quebec, Canada. The project is secured by an option agreement ("Lemare Option") entered into by the Company's wholly owned subsidiary Lepidico Holdings Pty Ltd and the owner of Lemare, Critical Elements Corporation (TSX-V:CRE), on 11 February 2016. Full details were reported to the market on 12 February 2016 (under then ASX code: PLP). | | | | | | | | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | Tenure is secure with no known impediments. | | | | | | | Exploration done by other parties | Acknowledgment and appraisal of
exploration by other parties. | Exploration was supervised and conducted by Consul-Teck staff contracting to Lepidico Ltd. | | | | | | | Geology | Deposit type, geological setting and style of mineralisation. | Pegmatite hosted spodumene mineralisation in Archaean greenstone. | | | | | | | Drill hole Information | A summary of all information material
to the understanding of the exploration results
including a tabulation of the following information
for all Material drill holes: | Refer to the body of the report – Tables 1 and 2; Figures 1 - 6. | | | | | | | | o easting and northing of the drill hole collar | Refer to the body of the report – Table 2 | | | | | | | | elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar | Refer to the body of the report – Table 2 | | | | | | | | o dip and azimuth of the hole | Refer to the body of the report – Table 2 | | | | | | | | o down hole length and interception depth | Refer to the body of the report – Table 1 | | | | | | | | o hole length. | Refer to the body of the report – Table 2 | | | | | | | | • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | N/A | | | | | | | Data aggregation
methods | In reporting Exploration Results,
weighting averaging techniques, maximum
and/or minimum grade truncations (eg cutting of
high grades) and cut-off grades are usually
Material and should be stated. | Overall intersections were based on geological boundaries – ie, downhole width of pegmatite intrusions. Inclusive high grade zones calculated using 0.5% Li ₂ O cut with up to 1m of internal dilution. Intercepts were determined by adding adjacent sample intervals. Intercept grades were determined by weighting sample intervals with respective grades. | | | | | | | | Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. | N/A | | | | | | | | The assumptions used for any reporting of metal equivalent values should be clearly stated. | N/A | | | | | | | Relationship between
mineralisation widths
and intercept lengths | These relationships are particularly important in the reporting of Exploration Results. | The pegmatite intrusives are sub-vertical and drill holes are inclined at 50 degrees, thus resulting in near true thicknesses of down-hole intercepts. Therefore, only down-hole intercepts are reported. | | | | | | | | If the geometry of the mineralisation
with respect to the drill hole angle is known, its
nature should be reported. | Drilling is perpendicular to the strike of the pegmatites. Pegmatites dip sub-vertically. | | | | | | | | If it is not known and only the down
hole
lengths are reported, there should be a
clear statement to this effect (eg 'down hole
length, true width not known'). | Intercepts reported as down-hole intercepts. | |---------------------------------------|---|---| | Diagrams | Appropriate maps and sections (with
scales) and tabulations of intercepts should be
included for any significant discovery being
reported These should include, but not be limited
to a plan view of drill hole collar locations and
appropriate sectional views. | Plans showing drill hole locations are provided in the body of the announcement as Figures 1and 2. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | Results for all samples received are reported in Appendix 1. Selected cross-sections are presented in Figures 4 - 6. | | Other substantive
exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Summary results are presented in Table 1 and a full list of multi-element assays is provided as Appendix 1 to the announcement. | | Further work | The nature and scale of planned further
work (eg tests for lateral extensions or depth
extensions or large-scale step-out drilling). | Future work will aim at increasing the density of drilling to enable the definition of a mineral resource estimate and extensional drilling to increase the size of the mineralised target. | | | Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Specific location and the nature of future work will be decided on full integration of current data with previous work and interpretation of the consequent complete database. | The information in this report that relates to Exploration Results is based on information compiled by Mr Tom Dukovcic, who is an employee of the Company and a member of the Australian Institute of Geoscientists and who has sufficient experience relevant to the styles of mineralisation and the types of deposit under consideration, and to the activity that has been undertaken, to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves." Mr Dukovcic consents to the inclusion in this report of information compiled by him in the form and context in which it appears. ******